

Automatic **Real-World** Malware Benchmarking of Android Taint Analyses

Use it. Profit from it. Contribute to it. Now!

All artifacts available!

Benchmark Definition
 The figure on the right depicts
 how benchmarks are structured.
 To evaluate a benchmark, we
 count true and false positives
 and negatives (TP/FP/TN/FN).
 These are then used to compute
 precision, recall and F-measure.
 Example: If an (un-)expected
 taint flow matches a detected

2 TaintBench Framework

The TaintBench Framework consists of three parts that handle different tasks. For the n^{st} , 2^{nd} and 3^{rd} part we extended JadX, ReproDroid and VSC respectively.

The figure below shows the entities of each part.

3 TaintBench Suite

TaintBench.github.io

The <u>Taint Analysis Benchmark Format</u> (TAF) is used to transfer information between these parts. The complete suite consists of: • **39** Benchmark Apps

• 249 Benchmark Cases (203 expected, 46 unexpected)

```
{ "findings": [{
   "ID": 1,
   "isNegative": false,
   "description": "This malicious flow leaks IMEI via SMS."
   "source": {
      "statement": "String s = getIMEI();",
      "methodName": "onCreate",
      "className": "MainActivity",
      "lineNo": 1,
      "targetName": "getIMEI",
      "targetNo": 1,
      "IRs": [{"type": "Jimple",
   }
}
```

"IRstatement": "\$r2 = virtualinvoke ..."}]},
"sink": {

"statement": "sendTextMessage(Logger.imei);", ...},
"intermediateFlows": [

{"ID": 1, "statement": "s = "IMEI: " + s;", ...}, {"ID": 2, "statement": "Logger.imei = s;", ...}], "attributes": { "staticField": true, "appendToString": true}, }, { ... }]...}

	DroidBench				TaintBench											
	Expected Cases: 163			Expected Cases: 186												
	Unexpected Cases: 41				Unexpected Cases: 35											
	DB1		DB2		TB1		TB2		TB3		TB4		TB5		TB6	
	ТР	FP	TP	FP	TP	FP	TP	FP	ΤР	FP	TP	FP	TP	FP	TP	FP
Amandroid	80	12	95	15	2	2	31	19	31	19	31	18	29	4	8	42
Amandroid*	41	10	46	10	5	1	6	7	6	7	6	6	7	1	1	12
FlowDroid	89	12	96	12	26	0	84	10	102	11	101	9	59	8	51	62
FlowDroid*	87	12	95	12	16	1	41	14	43	14	42	13	28	5	23	34
	TP: True Positive, FP: False Positive															
S 1 -																

Two versions of Amandroid and FlowDroid were employed during evaluation – the newer version is always marked by *. As benchmarks the micro benchmark DroidBench (DB) and TaintBench (TB) have been used and compared.

Evaluation Results

Overall, six experiments were conducted:

- 1. Default Sources & Sinks
- 2. Suite-Level Sources & Sinks
- 3. App-Level Sources & Sinks
- 4. Case-Level Sources & Sinks
- 5. Minified Apps
- 6. Delta Apps

Over-Adaption: Tools are less accurate on TaintBench than on DroidBench

Regressions: Newer tool versions are less accurate

By: Linghui Luo, Felix Pauck, Goran Piskachev, Manuel Benz, Ivan Pashchenko, Martin Mory, Eric Bodden, Ben Hermann, Fabio Massacci